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ABSTRACT 

 

Localization and mapping are two of the most central tasks when it comes to autonomous robots. It 

has often been performed using expensive, accurate sensors but the fast development of consumer 

electronics has made similar sensors available at a more affordable price. 

Building rich 3D maps of environments is an important task for mobile robotics, with applications in 

navigation, manipulation, semantic mapping, and telepresence. Most 3D mapping systems contain 

three main components: first, the spatial alignment of consecutive data frames; second, the detection 

of loop closures; and third, the globally consistent alignment of the complete data sequence. While 

3D point clouds are well suited for frame-to-frame alignment and for dense 3D reconstruction, they 

ignore valuable information contained in images. Color cameras, on the other hand, capture rich visual 

information and are becoming more and more the sensor of choice for loop closure detection.  

In this project a quadcopter and a Microsoft Kinect™ camera are used to perform Simultaneous 

Localization and Mapping, SLAM. This project aims to build rich 3D maps using RGB-D (Red Green 

Blue – Depth) Mapping. RGB-D mapping is a framework for using RGB-D cameras to generate dense 

3D models of indoor environments. RGB-D Mapping exploits the integration of shape and appearance 

information provided by these systems. Alignment between frames is computed by jointly optimizing 

over both appearance and shape matches. Visual appearance is incorporated by extracting sparse 

feature points from the RGB images and matching them via a RANSAC (Random Sample Consensus) 

procedure. The resulting feature matches are then combined to determine the best alignment between 

the frames and build the final 3D map. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Simultaneous Localization and Mapping 

SLAM or Simultaneous Localization and Mapping is an umbrella term for algorithms that 

build maps of an unknown environment and at the same time perform localization in that area. 

The method is often used by robots and other vehicles and is a first step towards making them 

autonomous. Once a map of the area is created and the vehicle knows its position with respect 

to the map, the next step, the navigation and route planning step, can take place. As a third 

step, smart decisions, dependent on the information available for the vehicle, can be made and 

the vehicle may then be regarded as truly autonomous. 

 

1.2 Background 

The research in the area of SLAM has been on the agenda for several universities and other 

institutions worldwide the last decades. The continuous improvement of the computational 

capacity in computers has made it possible for SLAM applications to be performed outside of 

pure test environments, and in the most latter years even outdoors [1][2] has often been 

performed using a laser scanner, which is an accurate but expensive sensor. In this project, 

the laser scanner is replaced by a Kinect™ camera, which is a much cheaper, but still qualified 

sensor unit.  

 

The applications of SLAM are numerous. If mapping of a hazardous or poisonous 

environment is required a robot with SLAM-based navigation is an excellent option. Some 

concrete examples are indoor mapping of houses on fire or mapping of damaged nuclear 

reactors. Another interesting case is monitoring of electrical power lines. That kind of work 

might be expensive and time-consuming work for humans to do but probably cheaper when 

using an UAV1. The UAV will simply follow the power lines \ autonomously and at the same 

time check the power line for damage.  

 

The research area of SLAM has matured during the past years and the 2D-SLAM problem 

using a laser scanner has been implemented in so many cases that it may now be considered 
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solved [3] The field of visual SLAM, i.e. using visual images rather than using measurements 

from   sensors or IMU: s (Inertial Measurement Unit) has increased over the last years. 

Contributing to this development is a large variety of open source components, aiming at 

separate tasks in the SLAM machinery [3]. 

 

During the years’ different types of sensors have been used to perform visual SLAM, e.g. 2D 

laser scanners, mono cameras and stereo cameras [3]. The development in the robotic 

community has lately shifted towards the use of sensors that are cheaper, lighter, smaller and 

thus often less accurate. This change allows for a use of UAVs to a bigger extent [4] and also 

increases the potential of getting SLAM based consumer products, e.g. autonomous vacuum 

cleaners, on the market.  

 

The work load of implementing an embedded SLAM-system has decreased as the number of 

open source packages has increased. The Point Cloud Library, PCL, is a standalone, large scale, 

open project for processing of 3D point clouds, which might become handy when working with 

applications concerning 3D SLAM. Another neat package is the OctoMap package which is a 

library used to describe mapped environments in a way that is both probabilistic and scalable. 

 

1.3 Problem Formulation 

In this project SLAM will be performed using a Kinect™, instead of a laser scanner, as primary 

sensor. With a Kinect™ the sensor data cannot be expected to be as accurate as from a laser. 

Laser scanners are well known to have high accuracy in range. The Kinect™ has a maximum 

range of about eight meters while a laser scanner often has a maximum range of 50-80 meters.  

 

Apart from being cheaper the Kinect™ has other advantages compared to a laser scanner. Its 

measurements are three dimensional (range and bearing in two directions) while the data from 

a laser scanner is two dimensional (range and bearing). This makes the data more information 

dense. In addition to that the Kinect™ also has a RGB-camera which captures the surroundings 

in video pace. This gives the possibility to get 3D maps with colored textures. The ability to 

recognize similarities between images is a key factor for a visual SLAM algorithm to be 

successful. Without that ability, the algorithm is lost. In this project, the performance of indoor 

visual SLAM using a quadcopter will be evaluated with the following questions as guidelines. 
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1.4 Limitations 
In this project, the Kinect™ will always be mounted on a Quadcopter, and not be used in 

combination with any other robot platform. The different algorithms for e.g. visual feature 

detection, pose estimation or map building, will all come from open source libraries, but it is 

in the scope of this project to make adjustments to them to fit our purposes. Furthermore, the 

whole quadcopter platform and much of its functionality will be based on ROS2 and any 

possible limitations in ROS will consequently be reflected in the evaluations. It is not in the 

scope of this project to add any additional sensors to the quadcopter, neither will the existing 

hardware be modified in any way. Measurements will be performed indoors, in order not to 

expose the Kinect™ to too much IR radiation, in which case the measurements from the depth 

sensor is affected. When data is collected there will be no moving objects present in the 

environment, since such disturbances might affect the algorithm in an unpredictable way. There 

will not be any demands on real time performance on algorithms in this project. Real time 

performance here refers to the ability of mapping a room at the same time as the quadcopter 

moves around. It also means that all computations to build the map are completed in such a 

pace that the quadcopter can move around freely in the environment and still have the most 

recent estimate of the surroundings at most one second after that the corresponding image was 

captured.  

 

1.5 Project Outline 
The previous work already done on the SLAM algorithms are discussed in the literature review. 

project report continues with chapter 3 that gives an introduction to the quadcopter hardware 

and software. Chapter 4 explains the localization algorithms in more detail and presents the 

open source SLAM algorithm, RGBDSLAM, used in this project. Chapter 5 describes the 

modeling and filtering used to extend the original RGBDSLAM algorithm. Methods for 

implementation and evaluation of the different SLAM algorithms are found in Chapter 6. 

Finally, the results are presented in Chapter 7 and a discussion is found in Chapter 8. 

  



Simultaneous Localization and Mapping using a 
Kinect in a sparse feature indoor environment                                                                                                                    2016-2017  

  

 

 

Department of Instrumentation Technology                   Page 4  
 

CHAPTER 2  

LITERATURE SURVEY 

 The field of robotics is still missing a general acknowledged solution to solving the SLAM 

problem. In this chapter, we review the previously published literature which lays the 

foundation and the basis for further work. SLAM represents the simultaneous localization and 

mapping by a quadcopter of the surrounding space. In the past decades, a tremendous effort 

has been put in finding a perfect solution to this problem due to the necessity of building 

autonomous vehicles used in fields like search and rescue, entertainment or transportation. 

The autonomous vehicles should be able to determine their position relative to a map that they 

are able to generate. When the position of the quadcopter is known relative to the space that 

surrounds him, the problem is less complicated since it has limited computational complexity 

[9] and the only errors that are taken in consideration are the ones coming from the sensor that 

evaluates the environment. This problem expands when the initial position of the quadcopter is 

not known and besides the uncertainty of the map quality we have to take in consideration 

approximations and possible errors in determining the actual position of the quadcopter [12]. 

Another unknown that we are dealing with when talking about space recognition and mapping 

is the sensor employed for such a task. Laser-based, sonar based or vision based sensors are the 

ones that stand out and were most used by researchers [5]. All of them have advantages and 

disadvantages. The most recent focus is on vision based sensors since they offer the highest 

resolution and a good range but that comes with the disadvantage of complications in 

processing the output of the sensor. It appears that there is no definite solution to our problem 

even if the research has been ongoing for the past three decades in this field. Due to the 

numerous uncertainties and the computational complications that arise from these methods it 

becomes obvious that when dealing with large spaces and moving objects there isn’t an 

established solution to mapping and consequently the trajectory of the quadcopter is still variant 

upon the environment.  

For mobile quadcopters mapping can be classified according to the underlying estimation 

techniques used in building that chart. The most popular approaches are described below; 

SLAM represents the simultaneous localization and mapping by a quadcopter of the 

surrounding space. The basic idea behind SLAM is to obtain a map of the environment and 

estimate where the quadcopter is located within that map concurrently. Furthermore, the map 
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and the quadcopter’s pose both have to be estimated at the same time to accomplish the task 

well. SLAM problem involves finding appropriate representation for both observations of the 

environment and the motion of the quadcopter. In order to do so, the vehicle or quadcopter 

must be equipped with a sensorial system capable of taking measurements between landmarks 

and the vehicle itself while it is moving in the map. It is also known as a Concurrent Mapping 

and Localization challenge. The aim of this chapter is to introduce previous work on this issue, 

to list some advantages and disadvantages of current available techniques and also to identify 

gaps in research like possible new directions for improvement in future.  

In 2001, a paper [15] was published by W.M Gamini Dissanayake which used MMW 

(millimeter waves) to build relative maps. EKF [16], EIF [17] and PF [18] methods might be 

sufficient for some applications to learn local maps only [19]. In addition, other papers focused 

in improving the way the information is received from the outside space and consequently the 

way that the map is estimated.  

The improved usage of ultrasonic sensor for detecting obstacles and walls for -based 

quadcopters for immediate localization was presented by Sungyoung Jung [20]. This algorithm 

showed high degree of accuracy and also could solve the “kidnapping” problem in a fast 

operating time. There are methods used to correct the poses of the quadcopter based on the 

inverse of the covariance matrix [18]. The main advantage of SEIFs (Sparse Extended 

Information Filter) is that they make use of the approximate sparsity of the information matrix. 

Another method was proposed in 2005, a smoothing method called Square root smoothing and 

mapping (SAM) [21]. Compared with EKF-based methods several advantages could be 

mentioned such as covering non-linearity and the speed in computing.  

Differential Evolution Solution to the SLAM Problem [9] is the name of the other paper which 

presented a new solution for the SLAM problem and was published in 2007 by Luis Moreno 

and his colleagues. Chanki Kim provided a robust new algorithm based on the scaled unscented 

transformation called Unscented FastSALM(UFastSLAM) in 2008[10]. 

Due to the necessity of having useful details and also perfect trajectory the research extended 

on the existing Kalman filter (EKF) [14]. Besides EKF there is another method to solve SLAM 

which is called Information Filtering (IF) or Extended (EIF). EKF by approximating the 

quadcopter motion using linear functions accommodates the nonlinearities from the real world. 

One of the advantages of IF over EKF is that the data is filtered by simply summing the 
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information matrices and vector providing more accurate estimates [15]. Secondly, IF are more 

stable than KF. Finally, EKF is very slow when estimating high dimensional maps because 

every single vehicle measurement generally effects all parameters of the Gaussian, therefore 

the updates requires prohibitive times when dealing with environments with many landmarks 

[15]. For high dimensional state spaces, the need to compute all these inversions is generally 

believed to make the IF computationally poorer than Kalman filter. In fact, this is one of the 

reasons why the EKF has been vastly more popular than EIF. These limitations do not 

necessarily apply to problems in which the information matrix possesses structure [11]. 

There are by now a few examples of successful EKF SLAM implementations. Another popular 

approach is the FastSLAM method [10] which uses particle filters. Inconsistencies due to poor 

data association, linearization errors and particle depletion are the main disadvantages of both 

methods. Fortunately, digital cameras are today ubiquitous and since their measurements are 

so accurate at very low cost in comparison with other sensors they have become very popular 

and commonly used. This reason has spawned a field in which the SLAM problem is solved 

only with cameras [13]. Without any other sensors measuring the platform dynamics, the image 

frame rate and the visual information contents in the environment are the only limiting factors 

for the ego motion estimation and hence the map quality. 

Different cameras have been used in experiments. An omnidirectional camera can be used to 

estimate the distance of the closest color transition in the environment, mimicking the 

performance of laser rangefinders. These measurements are introduced into particle filter to 

determine the position of the quadcopter within a previously constructed map. Eventually only 

one camera was used (called MonoSLAM). The proposed method, which takes place in real-

time, extracts a reduced but sufficient number of salient image features through which are 

identified by their associated image, patches. 

The Expectation Maximization based method (EM) is a statistical algorithm that was developed 

in the context of maximum likelihood (ML) estimation and it offers an optimal solution, being 

an ideal option for map-building but not for localization [9]. This way is useful and can build 

a map when the quadcopter’s pose is known, for instance, by means of expectation. The main 

advantage of EM over KF is that it can tackle the correspondence problem surprisingly well. 

We reviewed traditional methods of solving SLAM such as Kalman Filtering Particle Filtering, 

EM and IF methods and we also analyzed some new methods which use cameras to build maps 
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for mobile quadcopters in unknown environments. Obviously, more research is needed since 

there is no perfect solution to the SLAM problem. When the environment is changing the 

system should adapt the mapping and the trajectory accordingly. The maps need to contain 

more details especially when dealing with noisy environments like water. 
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CHAPTER 3 

HARDWARE SETUP 
 

The setup consists of two parts, a quadcopter which is an aerial vehicle that uses four rotors for 

lift, steering, and stabilization. The Kinect camera is mounted onto the quadcopter and 

connected to the computer using a thin USB cable.  

 

3.1 UAV Quadcopter 

A UAV quadcopter is an unmanned aerial vehicle with four rotating rotors used for lift and 

movement. It uses an electronic control system and electronic sensors to help stabilize itself. 

Quadcopter parts have been decreasing in price over the past couple of years due to 

technological advances. As a result, more hobbyists, universities, and industries are taking 

advantage of this opportunity to design and develop applications for the quadcopter. 

 

3.1.1 Flight Control 

A quadcopter consists of four motors evenly distributed along the quadcopter frame as can be 

seen in figure 3.1. The circles represent the spinning rotors of the quadcopter and the arrows 

represent the rotation direction. Motors one and three rotate in a clockwise direction using 

pusher rotors. Motor two and four rotate in a counter-clockwise direction using puller rotors. 

Each motor produces a thrust and torque about the center of the quadcopter. Due to the opposite 

spinning directions of the motors, the net torque about the center of the quadcopter is ideally 

zero, producing zero angular acceleration. This eliminates the need for yaw stabilization. A 

vertical force is created by increasing the speed of all the motors by the same amount of throttle. 

As the vertical forces overcome the gravitational forces of the earth, the quadcopter begins to 

rise in altitude. Figure 3.2 shows the vertical movement of the quadcopter. As above, the circles 

represent the spinning rotors, the larger arrows represent the direction the rotors are spinning, 

and the black arrows represent the forces caused by the spinning rotors. Pitch is provided by 

increasing (or decreasing) the speed of the front or rear motors. This causes the quadcopter to 

turn along the x axis. The overall vertical thrust is the same as hovering due to the left and right 

motors; hence only pitch angle acceleration is changed. Figure 3.3 shows an example of pitch 

movement of a quadcopter. As the front motor slows down, the forces created by the 

corresponding rotor are less than the forces created by the back rotor. These forces are 
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represented by the blue arrows. These forces cause the quadcopter to tip forward and this 

movement is represented by the red arrow [21]. 

 

 
Fig 3.1: Quadcopter: Motor rotation directions. 

 

Fig 3.2: Quadcopter: Vertical thrust movement. 
 
 

Roll is provided by increasing (or decreasing) the speed of the left rotor speed and right motors. 

This causes the quadcopter to turn along the y axis. The overall vertical thrust is the same as 

hovering due to the front and back motors; hence only roll angle acceleration is changed [22].  

 

Figure 3.4 shows an example of roll movement of a quadcopter. As the right motor slows down, 

the forces created by the corresponding rotor are less than the forces created by the left rotor. 

These forces are represented by the blue arrows. This causes the quadcopter to tip to the right 
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and this movement is represented by the red arrow. Yaw is provided by increasing (or 

decreasing) the speed of the front and rear motors or by increasing (or decreasing) the speed of 

the left and right motors. This causes the quadcopter to turn along its vertical axis in the 

direction of the stronger spinning rotors. Figure 3.5 shows an example of yaw movement of a 

quadcopter. As the front and back motor slows down, the forces created by the corresponding 

rotors are less than the forces created by the left and right rotors. The quadcopter will begin to 

rotate in the same direction as the faster spinning rotors due to the difference in torque forces. 

This movement is represented by the red arrow. 

                                

                                              Fig 3.3: Quadcopter: Pitch movement. 
 
 
 

Fig. 3.4: Quadcopter Roll Movement 
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                                      Fig 3.5: Quadcopter: Yaw movement 

 

3.2 Microsoft Kinect 

The Kinect™ camera is a low-cost sensor built specially for the Xbox console. It can deliver a 

RGB image and a depth image in parallel in video rate. Microsoft has not released any official 

hardware specifications for the Kinect™ sensor and therefore unofficial specifications from 

reversed engineering is the most accessible way to get insight in the machinery. The 

OpenKinect community states that the Kinect™ has two cameras, one RGBcamera and one 

range camera. The latter is based on structured light. According to PrimeSense, the 

manufactures of the micro controller in the Kinect™, the projected IR-points are processed by 

a PS1080A micro controller to produce a depth image. From design reference for PrimeSense 

PS1080A it can be inferred that: 

 

Field of View (Horizontal, Vertical, Diagonal) = 58° H, 45° V, 70° D 

Spatial x/y resolution (@ 2 m distance from sensor) = 3 mm 

Depth z resolution (@ 2 m distance from sensor) = 1 cm 

Operation range = 0.8 m - 3.5 m 
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Fig. 3.6: The Microsoft Kinect Sensor 
 
3.2 Setup  

The final hardware setup for the project looks like this: 
 
 

 
Fig. 3.7: Shows the Kinect mounted on top of the quadcopter and connected to the 

workstation 
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CHAPTER 4 

MAPPING ALGORITHMS 
 

In this chapter, the functionality of a generic SLAM algorithm is explained. A presentation of 

one of the most central open source packages in this project, RGBD- SLAM, is also made. 

 

4.1    Under the Hood of a SLAM Algorithm 

A SLAM algorithm essentially consists of the following steps: 

 

• Data acquisition; In this step measurements from the sensors, e . g .   Laser scanner 

or video camera, are gathered. 

• Feature extraction; a number of characteristic, and thereby easily recognizable, 

landmarks1 are selected from the data set. 

• Feature association; landmarks from previous  measurements are associated with 

landmarks from the most recent measurement. 

• Pose estimation; the relative change between the landmarks and the position of the 

vehicle is used to estimate the new pose of the vehicle. 

• Map adjustment; the map is updated according to the new pose and the corresponding 

measurements. 

 

The five tasks are continuously repeated and a trajectory of position estimates and a map is 

built up. Figure 4.1 illustrates the process.  In Figure 4.1 the quadcopter has received input data.  

Landmarks are extracted from the data.  In the case of visual SLAM, a landmark can be 

anything that is easily recognizable by a visual sensor, e.g. 

• A corner 

• An edge 

• A dot in a protruding color 

 

The quadcopter in Figure 4.2 has extracted three landmarks and these are stored in a 

database containing all landmarks that have been observed so far.   In Figure 4.2 the 

quadcopter has moved forward  and received new data. The quadcopter extracts  

landmarks from the data and searches through its database to see if there a r e  any 
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matches with old landmarks. Extracted landmarks that are not found in the database 

are added and landmarks giving a match in  the database are used to estimate the change 

of the quadcopter’s pose.  This is done by measuring the change in distance and angle 

to the old landmarks.  When the new pose is estimated the quadcopter uses this estimate 

and the measurements to adjust the positions of the landmarks. SLAM can be regarded 

as a hen and egg problem. A proper map is needed to get a proper pose estimate and a 

proper pose estimate is needed to get a proper map. 

 
 
 
 
 
 
 
 
 
 
 
 
 
                 
                          Fig 4.1:   Quadcopter position and landmarks at time t0. 
 
 
 

 

 

 

 

 

 

  

 

 Fig 4.2: Quadcopter position and landmarks at time t1 > t0.                          

 

 



Simultaneous Localization and Mapping using a 
Kinect in a sparse feature indoor environment                                                                                                                    2016-2017  

  

 

 

Department of Instrumentation Technology                   Page 15  
 

4.2    RGBDSLAM 
 
This project is based on an algorithm called RGBDSLAM, which is six degrees of freedom 

(x, y, z, roll, pitch and yaw) algorithm that performs visual SLAM (VSLAM). The 

algorithm uses both the color (RGB) and the depth (D) in- formation and is generic due 

to the fact that it contains no motion model.   The algorithm is developed by researchers 

from the University of Freiburg in Germany and is described in Engelhard et al. [29] 

and Enders et al. [28].  A schematic overview of the algorithm can be studied in Figure 

4.3. 

 

Fig 4.3: Schematic overview of the RGBDSLAM algorithm                                      
provided as a ROS package. 

 
As a first step the depth and RGB-images are collected with synchronized time- stamps. 

Then features are extracted from the RGB-image by a feature extraction algorithm. 

RGBDSLAM has multiple feature extraction algorithms implemented. The 

implementations have different pros and cons in different environments and they differ 

in computation time [31].  The algorithms implemented are SURF, SIFT and ORB and 

the first two are described in section 4.4. 
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In the next step of the algorithm extracted features are projected to the depth image.  

This step introduces some uncertainty into the chain of operations. Mainly due to the 

synchronization mismatch between depth and RGB-images, but also because of 

interpolation between points with large differences in depth. The fact that a minor miss 

projection of a feature lying on an object border on to the depth image can result in a 

big depth error makes  features  picked a t  object borders unreliable. 

 

To find a 6D transform for the camera posi t ion  in this noise the RANSAC algorithm is 

used.  Features are matched with earlier extracted features from a set of 20 images in the 

standard configuration. The set consists of a subset including some of the most recent 

captured images and another subset inc luding  images randomly selected from the set 

of all formerly captured images.  Three matched feature pairs are randomly selected 

and are used to calculate a 6D transform. All feature pairs are then evaluated by their 

Euclidian distance to each other.  Pairs whose Euclidian distance is below a certain 

threshold are counted as inliers. From these inliers, a refined 6D transform is calculated 

using GICP. 
 
 
4.3    Random Sample Consensus 
Random Sample Consensus, or RANSAC for short, is an iterative algorithm used to adapt 

the parameters of a mathematical model to experimental data.  RANSAC is a suitable 

method when a data set contains a high percentage of outliers, i.e. measurements that 

suffer from measurement errors so large that the validity of the measurements is low. The 

method was first presented in the beginning of the eighties in [30] and was suggested 

to be a suitable method for automated image analysis. 

 

Assume a mathematical model that has n free parameters which can be estimated given 

a set of measurements, P.  The number of measurements in P has to be greater than 

n, #P > n. Let S and T be two different varying subsets of P. Given the assumptions the 

RANSAC algorithm works as follows: 

 

• Randomly select a subset of the measurements in P and call it S. Use S to make a first 

estimate of the n free parameters of the model. 
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• Use the current  estimate of the model  t o  select a  new subset o f  points, T from the 

measurements that are within some error tolerance from the model. 

• If T contains more measurements than some given limit then re-estimate the free 

parameters of the model according to this new subset. Calculate a measure of how well 

T and the model coincide, store that value and select a new subset S. 

• If It does not contain more measurements than the given limit, randomly select a new 

subset S from P and start all over again. 

• If none of the selected subsets hold more measurements than the limit, exit in failure, 

or if the maximum number of iterations has been reached, exit. 

 

The method is characterized by three parameters: 

1.  The error tolerance used to determine when data is not part of the model. 

2.  The maximum number of iterations in the algorithm. 

    3.  The minimum value on the number of measurements in a subset to be used for 

parameter  estimation. 

 

The big advantage with RANSAC is the robust way it handles outliers in the data set. 

The drawbacks with RANSAC is that it does not guarantee any solution, nor that a 

given solution is optimal.  Furthermore, the three parameters  mentioned above are to 

a large extent problem specific, which means that experimental adjustment to the specific 

case treated is required. 

 

                                             Fig 4.4: Example of Measurement   
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Fig 4.5:  Measurements as seen by RANSAC with the model being a line. Stars are 
considered as outliers and dots are considered as inliers. 

 

4.4 Feature Extraction  
The two commonly used feature extractors Scale Invariant Feature Transform, SIFT, 

and Speeded Up Robust Features, SURF is briefly described below. 

 

4.4.1 Scale Invariant Feature Transform(SIFT) 
SIFT is a method for extracting and detecting landmarks in an image.  The method was 

invented in 1999 [15] and has since been widely used.   The algorithm is, as the name 

suggests, invariant to scale transformations in images and also rotational 

transformations. SIFT is much appreciated for its reliability and repeatability which 

are important properties of a feature extractor/detector [13].  The features are selected 

at maxima and minima of the color in an image that has first been smoothed and then 

filtered through a difference of Gaussian filter (DoG). The continuous two-

dimens ional  difference of Gaussian convolution kernel is 

                                           (4.1) 

where K is a constant bigger than one which scales the standard deviation. The DoG filter 

creates two versions of the original image; one that is somewhat more blurred than the other.  

The blurring is carried out using approximate Gaussian filtering kernels. Then the most blurred 

image is subtracted from the other one and maxima and minima in the resulting image are 

detected.  Detected points with low contrast or points lying along edges are discarded. Each 

detected key- point is characterized by the magnitude and rotation of the pixel wise image 
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gradient. Here Ai j represents the value of each pixel, Mij is the magnitude of the gradient and 

Rij is the orientation of the gradient. 

 

                                                               (4.2) 

The above calculated values are post processed to increase the robustness to illumination 

changes. 
 
4.4.2 Speeded Up Robust Features(SURF) 
 
The feature detection algorithm SURF is partly inspired by SIFT. The method aims at 

being a fast, but yet reliable, algorithm.  The method is both scale-  and rotation 

invariant and handles blur and changes in illumination in a satisfying manner [31].  

The filters used in SURF are discretized and cropped which results in rectangular filters 

with integral values.   In this way, the computational load is reduced and the extraction 

or detection of features is speeded up. 

 

4.5 Registration 
 
In order t o  build a  map of several point  clouds regi s t ra t ion  is necessary.   Registration 

is the process of finding the best possible t ransformation  to stitch two point clouds 

together. The point clouds are called destination, D, and source, S. This section presents 

some of the most used and known registration methods. In Figure 4.4 an example of 

registration between two point clouds is showed. 
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                       Fig 4.6: Example of registration between two point clouds.   
 
The overlap of the point clouds is seen most easily in the bottom of the figure 4.6.  There 

is approximately 80% overlap. 

 
4.5.1 Iterative Closest Point - Point to Point 

Iterative Closest Point (ICP) is one of the most intuitive registration methods. The 

algorithm has been widely used and was developed in the early 90’s. A frequently cited 

analysis of the algorithm [34].  The algorithm can be summarized in two key steps. 

 

1.  Find matching feature points between the two point clouds. 

    2.  Compute a transform, T that is a rotation and translation such that it minimizes.  

the Euclidian distance between the matching points. 

 

An iteration of these two steps typically gives convergence to the desired trans- form.  A 

key parameter to tune in the algorithm is the maximum matching distance threshold, 

emax.  With a complete overlap of the two point clouds a high value of emax can be 

used and the algorithm will still converge.  The parameter emax has to be low if 

matching points only come from a small overlap, otherwise mismatch probably makes 

the algorithm diverge.  The parameter is a tradeoff between convergence and accuracy 

[35] presents the algorithm as in Algorithm 1. 
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A far more advanced algorithm to handle registration is Generalized ICP, GICP, first presented 

in [35]. This can be thought of as a plane to plane matching algorithm. By assigning 

probabilistic properties to extracted features a most likelihood estimate of the transform can be 

achieved. Furthermore, the probabilistic framework can make use of all general research in 

probabilistic techniques for increased robustness, such as outlier rejection. 

 

4.6 General Graph Optimization 

The General Graph Optimization package (abbreviated g 2 o) is an open source library 

which implements a general and efficient graph optimizer.  A graph optimizer achieves 

a minimization of a nonlinear error function represented as a graph, see Figure 4.5.  The 

nodes represent vectors of parameters and the edges how well two parameter vectors 

match to external constraint, relating the two parameter vectors.  In the case where 

g2O is used by RGBDSLAM each node in the graph represents a state variable of 

the quadcopter and each edge represents a pairwise observation between the nodes 

that are connected by that edge. The meaning of a pairwise observation is that node 

B observes its pose with respect to node A, and vice versa.  The algorithm is fast 

due to, among other things, its use of the sparse connectivity property of the graph 

and advanced solvers of sparse linear systems. The interested reader may refer [36] 

for a more thorough presentation. 
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Fig 4.7 To the left a graph with nodes and edges and to the right them corresponding 
nonlinear error function where Ii j is the information matrix                                



Simultaneous Localization and Mapping using a 
Kinect in a sparse feature indoor environment                                                                                                                    2016-2017  

  

 

 

Department of Instrumentation Technology                   Page 23  
 

CHAPTER 5 

MODELS AND FILTERING 

 

So far, this project has given an overview of the system and an introduction to the open 

source algorithm RGBDSLAM. In an attempt to improve the performance of the system, 

according to the guidelines, three steps are taken: 

 

1. Odometry and gyro data is measured. 

2. An appropriate motion model for the quadcopter is implemented. 

3. Already existing measurements from visual odometry are fused with     odometry, gyro 

measurements and the motion model us ing  an Extended Kalman Filter. 

 

These three m o d i f i c a t i o n s  result in an algorithm that in the following will be called 

the modified algorithm as opposed to the original algorithm. 

 

This chapter introduces the mathematical models used to formulate the SLAM problem 

in a rigorous manner.  The models consist of both motion models that describe the 

motion of the quadcopter and measurement models that demonstrate how the sensor data 

is inserted into the framework.  The chapter continues with an explanation of key 

properties of the filter that fuses the motion model and the measurement models. 

 
 
5.1    Notation 
 
The state vector  of the quadcopter at time instance k is called x k  a n d  holds a  three-

dimensional pose, i.e. a three-dimensional position and a three-dimensional orientation. 

                                                                           (5.1) 

Here Xk, Yk and Zk represent the position of the quadcopter in a world fixed coordinate system 

and φk, θk and ψk, the roll, pitch and yaw angles, are defined as rotations around the world fixed 

X, Y and Z axes, see Figure 5.1.   The quadcopter speed is denoted vk and is the speed in the 
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case of 2D movement in X - and Y -direction. The angular velocity around the world fixed Z 

axis, i.e. the derivative with respect to time of the yaw angle is denoted vk. 

 

                                            

                                 Fig. 5.1: Definitions of roll, pitch and yaw. 

 

By using vk and ωk an extended state vector on the form can be formed. This state vector is 

used everywhere except in the original quadcopter node package. 

                                                                (5.2) 

The sample time cannot be considered uniform and thus the sample time from event k 

− 1 to k is denoted Tk. 

 

The system can be modeled as a state space model, which on a generic form is 

                                                                                                 (5.3)      

where wk and ek represent Gaussian noise with zero mean and covariance’s Q and R 

respectively 

                                                                                                            (5.4) 

and uk is the direct input to the system. Inputs to the system are supplied using the state 
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vector and there will not be any direct inputs to the system. Therefore, uk will onwards 

be disregarded. 

 

The measurement equation will  in the forthcoming cases be linear and can 

consequently be simplified as while the motion model remains nonlinear. 

                                                                                                        (5.5) 

 
5.2    Motion Models 
 
RGBDSLAM has no motion model and hence there are no constraints to the estimated 

trajectory of the quadcopter.   The absence of a motion model also makes the algorithm 

heavily dependent on a continuous stream of images that contains sufficiently many and 

re-detectable landmarks. To decrease the dependency of land- marks we l l -trimmed 

motion models a re  introduced.  

 

5.2.1    Original Motion Model 
The native navigation packages for the Quadcopter contain an EKF with a motion 

model.  The filter uses a 6D model and estimates the quadcopter pose with a 3D position 

and 3D orientation estimate. The filter fuses data from the   odometry, the gyro and 

the visual odometry.  Given the state vector (5.6) the general motion model is 

                                               (5.6)                             

 

The model models a constant position and fixed angles around the axes.  It is a very simple 

and perhaps not an appropriate model for a moving Quadcopter. 
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5.2.2     2D Constant Velocity Model 
By using the extended state vector in (5.7), a more dynamic but still relatively simple 

model can be formed as 

                                         (5.7) 

 

This model describes a 2D motion where the quadcopter is always in an upright pose- 

ton and travels with constant velocity.  This model might fit the experimental set up better 

than the model in (5.7). 

 

 

5.2.3     2D Coordinated Turn Model 
The motion modelling can be extended further by using the current yaw, ψk and the 

angular velocity ωk in a more sophisticated way. This is conveniently done by a 2D 

discretized coordinated turn model using polar velocity [37], which is given in (5.8) 

 

                                                             (5.8)                            
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                                                        (5.9) 

 

5.3    Measurement Models 
Measurement models are used to define how the sensors’ measurements and the states 

are related. The system consists of the three different sensor units 
 
•  O dometer, 
 
• Gyro  
 
• Visual odometer. 
 
 
The three units contribute to the measurement equation in different ways.  Note that 

the extended state vector (5.7) is used throughout this section. 

 

5.3.1       Odometry 
 
Tachometers are used to measure the speed of the quadcopter.   The Quadcopter platform 

uses specific hardware details and integration of speed to provide measurements of Xk, 

Yk, ψk and the speed vk. The measurement model of the   odometry sensor is given as 

 

 

                                                                                 (5.10) 
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                                                      (5.11) 

 

Here eod om,k (d ) is the sensor noise. The measured states from the odometry sensor are 

incrementally updated from an initial position and therefore the noise is also increasing. A 

simplified model  for the noise is a Gaussian noise model  according to 

                                                                                         (5.12) 

where the covariance, Rod om (d ), depends on the traveled distance, d , as : 

                                                                                                            (5.13) 

where  S is a design  parameter in form  of a constant covariance matrix for the specific sensor. 

5.3.2     Gyro 

The quadcopter has a single axis gyro which measures the yaw angle and the angular 

velocity around the z-axis i.e. 
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                                  (5.14)                       
The noise egyro; k is modeled as Gaussian noise with zero mean: 

                                                                                                      (5.15) 

 

5.3.3     Visual Odometry  
 
The visual odometry provides information from the RGB camera and the depth camera 

o f  the Kinect™.  Collection and post processing of data is  described in Section 5.2. 

The concerned algorithms that calculate useful information from the post processed data 

are presented in Chapter 5.  The result of the algorithms is an estimate of the full 3D 

pose of the quadcopter, i.e.    

                                        (5.16) 

Here evoke is modeled as Gaussian noise according to 
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                                                                                       (5.17) 

The measurement noise, Rv o (v ot ruset), depends on the parameter v otrust which  varies in 

a nonlinear way as described in Algorithm 3. 

 

5.3.4     Total Model 
Concatenation of the three measurement models above gives a total measurement 

equation on the form 

 

                                                                      (5.18) 

The measurement noise ek becomes 

                                                                                 (5.19) 

With a corresponding covariance matrix R as 

                                                  (5.20) 

Due to the assumption that the different measurement noises are independent from each 
other. 
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5.4    Extended Kalman Filtering 
 
In this section, the filtering process is described. All the sensors provide relative 

measurements, meaning that the measurements depend on earlier states.   The input to 

the filter is given as the difference of the new measurement and an earlier estimated state 

x ˆk .    odometry and gyro measurements are processed at full rate and the visual 

measurements are processed at a sub rate.  The filtering process c an  be studied in 

Figure 5.2.    The filter is an Extended Kalman F i l t e r  using first order Taylor expansion. 

It is implemented by the open source project Orocos Bayesian Filtering Library [38].  

The filter used in this project is described by Algorithm 2. 

 

 

where Qk is the process noise and h(x) defines the measurement equation according to the 

general notation in Equation. 
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5.4.1     Filter and Model Evaluation 

An overview of  the filter and its information flow can be studied in Figure 5.2. The 

loop updating the filter with visual odometry data is run in a sub rate com- pared to the 

loop updating the filter with   odometry and gyro measurements, which is run at full filter 

rate. 

 
Fig 5.2: Filtering process.  The filter has two loops with different rates. 

 

A sample of how the input information to the filter may look is showed in Figure5.3.  

The covariance of visual odometry depends on the votrust parameter which in turn 

depends on the number of reliable landmarks.  The covariance of the   odometry sensor 

depends on the traveled distance since last visual odometry update. These models the 

increased uncertainty related to the   odometry sensor as the distance to the last visual 

measurement increases. Figure 5.4 shows the prior distribution of the filter, i.e.  the 

distribution after system update but before measurement update. The posterior 

distribution is updated by the filter during every measurement update. The dots every 

third update symbolizes that visual odometry has provided information to the filter.   

These dotted estimates are the ones sent back to the RGBDSLAM algorithm. It can also 

be seen that the filter covariance increases in the same pattern as the odometry 

covariance. 
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            Fig 5.3 : Measurements from odometry, gyro and visual odometry sensors. 
 
 

                 
 
                                                        Fig 5.4 : Filter update event. 
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CHAPTER 6 

 

IMPLEMENTATION AND EVALUATION METHODS 

 

In this chapter, the cooperation of RGBDSLAM and the filter is described. Methods for data 

collection and post processing are also presented. The chapter is ended by a section that 

explains the experimental setup and evaluation criteria that are used when evaluating the 

implemented algorithm. 

6.1   Filter Integration in RGBDSLAM 

The models in Chapter 5 are well defined and strict in a mathematical sense but are not well 

suited for direct implementation in C++ and ROS. The theoretical models need some 

adjustments to fit the framework and additional functionality 

e.g. synchronization of data is required. 

 

Fig. 6.1: The tasks of pose estimation. 

Figure 6.1 gives an overview of how the pose estimation is performed in the algorithm. When 

new RGB and depth images, odometry data and gyro data are captured, three things can happen: 

1. All of the information is processed. 

2. Only the information from the odometry and gyro sensors is processed. 

3. None of the information is processed. 

 

RGBDSLAM- Pose estimation 

RANSAC GICP Filtercall 
Reception of 
filtered pose 

Odom/gyro 
input EKF 
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In the first case, where all data is used, the visual data is joined by the odometry and gyro data 

in the box named “Filter call “. Here the measurements from the three sensors are inserted into 

a ROS service call and sent, using a blocking call- response method to the filter. During the 

service call the input data to the filter is published on the input topics of the filter node. After 

reception of new data, the filter checks the time stamps of the measurements and, if the three 

measurements are sufficiently close in time, the distribution of the internal Gaussian probability 

distribution is updated accordingly. A new estimate of the mean value of the distribution is 

computed and returned as the current pose estimate. 

In the second case, where the visual data is disregarded, a multirate filter call is carried out. In 

this case a filter update with only odometry and gyro measurements (and information from the 

motion model) are used to create a new estimate of the quadcopter position. This estimate is 

not sent back to RGBDSLAM, but used internally in the filter. 

The third case, where none of the data is used, is when the parameters for data skipping are 

used to lower the rate of input data to the algorithm. 

If data is scattered in time the distribution is not updated. As a consequence, the time between 

updates, in Chapter 5 referred to as To, is varying.                                                   

 
6.1.1    Covariance of Visual Odometry 
 
The implemented software has a parameter, v0

trust (as in visual odometry trust) which adapts 

the trust in the visual data. Its value reflects how well the visual SLAM algorithm has 

succeeded in finding and matching landmarks in the processed images. The parameter is set 

according to the following algorithm.3D orientation estimate. The filter fuses data from 

the   odometry, the gyro and the visual odometry.  Given the state vector (5.7) the 

general motion model is 
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As Algorithm 3 shows the value of the parameter is decreased if there is a possible loop 

closure and the value is increased if there are few matches of landmarks between images. 

6.2     Data Collection and Post Processing 
In order to test parameter adjustments or new coding strategies in a repeatable way, it is not 

feasible to every now and then start up the Quadcopter and run it along some predefined track. 

The reasons for this are various, but amongst them are: 
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• The time consumption, 

• The variation of the flown route and 

• Changes in the environment. 

 

The solution is to record the data generated by a flight in such a way that it can be replayed 

time after time. This is conveniently done by the rosbag command. 

 

The visual data is presented in different ways on different topics. The data from the gyro and   

odometry sensors are given in one single form on one single topic each and there are hence no 

alternatives on how to record them. In addition to the concrete measurement data, the /ft. topic 

is recorded. This topic contains the transformations between different coordinate systems fixed 

in both the Turtle- Bot and its surroundings. In the post processing, when RGBDSLAM is 

running, the /ft. topic is supplemented with other transforms published by RGBDSLAM. 

Spelled out, all the recorded topics are: 

 

• /camera/depth/camera_info 

• /camera/depth/image 

• /camera/rgb/camera_info 

• /camera/rgb/image_color 

• /imu/data 

• /odom 

• /tf 

 

Recording all these topics gives data in a rate of about 70 [Mb/s]. The data cannot be replayed 

at full speed, since that would make the input buffers of RGBDSLAM to overflow. Instead data 

is played in a speed of 1/2 to 1/20 of full speed depending on the parameter values used in the 

algorithm. The data flow when replaying a bag file can be seen in Figure 6.2. 
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Fig. 6.2: Data flow when playing a bag file. The ellipses are ROS nodes. 

 

 

6.3     Evaluation Criteria 
 
Evaluation methods can be very different depending on the experimental setup and the 

resources available. A motion tracking system would for example give the opportunity to 

determine the position of the quadcopter with a high precision. A sensitive laser scan 

equipment could, by scanning the environment where tests are carried out, give a sort of 

ground truth for the estimated 3D map. In this project however, such high precision 

evaluation instruments have not been used. Instead the results have been evaluated using 

more ordinary techniques: 3D maps have been evaluated using ocular inspection and the 

estimated trajectories have been evaluated using the ground truth matcher.  

There are three key factors which are altered in order to evaluate the performance of the 

modified algorithm. Trajectories and maps can be computed 

 

 

/camera/depth/image 

/camera/rgb/camera_info 

/camera/rgb/image_color /rgbdslam_mod 

/rosbag_play /clock 

/tf 

/imu/data 

/robot_pose_ekf_mod 

/odom 
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1. with or without filter 

2. with the original algorithm parameters set to give a robust or a less computationally heavy 

performance 

3. using different data sets. 

The parameter alternatives mentioned above are specified in Table 6.1. The different 

choices essentially consist of deciding how often to call the filter, how many key points to 

extract and how many matches to require between images. 

The filter frequency determines how often to send both visual and odometric in- formation 

to the filter whereas the multirate filter frequency sets how often to send odometric data 

only. The maximum and minimum number of key points simply specify how many key 

points to extract from the images using the chosen image extractor (SURF is used in this 

project). The sufficient matches and min. matches parameters decide how many matches 

between the sets of key points from different images that are to be seen as a sufficient 

number and a minimum number, respectively. If the sufficient number of key points is 

reached, the algorithm will not try to get further matches and if there are fewer than the 

minimum value of matches, the algorithm will not try to calculate any transform between 

the corresponding images. 

Two data sets have been used in the evaluation. These are referred to as the “figure- eight 

“data set and the “few landmarks “data set. In the figure-eight set the quadcopter is run 

two laps in a figure-eight pattern, starting with a left turn at the base of the eight. The data 

set is quite ordinary in the sense that the room where it is recorded is not so big and the 

environment gives the quadcopter varying depth and RGB information. The second data 

set, the few landmarks set, unsurprisingly give the algorithm rather few landmarks to work 

with. It is recorded in a partly more sterile environment with a flat, white wall. Both data 

sets are recorded by flying the quadcopter manually with a PlayStation 3 control on a track 

marked with tape on the floor. The different environments can be studied in Figure 6.3 and 

Figure 6.4. 
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  Robust setup Slimmed setup Comment 
Filter frequency 2.5 hz 1.5 hz Vo, odom and 

gyro measurements 

Multirate filter frequency 7.5 hz 6 hz Only odom 
and gyro measurements 

Max. key points 400 75 Maximum 
number of key points 
extracted from image 

Min. key points 100 50 Minimum 
number of key points 
extracted from image 

Sufficient matches 100 60 Sufficient 
number of matches be- 
tween key- points from 
different images 

Min. matches 75 20 Minimum 
number of matches be- 
tween key- points from 
different images 

                                     Table 6.1: Parameter specifications. 

 

 

6.3(a) Overview of the office room. 
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6.3 (b) Another view from the office room. 

Fig. 6.3:  Views from the office in which the figure-eight data set was recorded. 

 

 

 

Fig.6.4: Overview of the meeting room in which the few landmarks data set was recorded. 
The ellipse indicates the area with few landmarks. 

 

 

                        
Table 6.2: Eight different combinations of evaluation setups. 

 
6.4    Ground Truth Matcher 
 
The ground truth matcher is written in MATLAB. It takes data of where the ground truth 

trajectory (represented by a tape on the floor) is located as well as measurements of the 

Setup Filter Data set Parameter setting 

1 No Figure-eight Robust 
2 No Figure-eight Slimmed 
3 No Few landmarks Robust 
4 No Few landmarks Slimmed 
5 Yes Figure-eight Robust 
6 Yes Figure-eight Slimmed 
7 Yes Few landmarks Robust 
8 Yes Few landmarks Slimmed 

 



Simultaneous Localization and Mapping using a 
Kinect in a sparse feature indoor environment                                                                                                                    2016-2017  

  

 

 

Department of Instrumentation Technology                   Page 42  
 

estimated trajectory. The origins of the two data sets have to be a common spot, fixed in the 

world. The estimated trajectory is rotated an angle θk, around its origin and the degree of match 

between the two patterns is calculated. The method is visualized below in Figure 6.5. The 

generated match value in the example is 0.058, which means that the nodes have an average 

deviation of 5.8 cm compared to ground truth. 

To calculate the match value, first let Θ = {θ1, θ2, . . ., θK}, where θk is the angle of rotation of 

the trajectory in iteration k, k = 1 . . . K. The degree of match as function of θ, M(θ), is calculated 

according to 

                                                                               (6.1)                   

where ai (θ) is the shortest Euclidian distance from node i in the estimated trajectory to any 

node in the ground truth given the angle of rotation θ.  N is the number of positions in the 

estimated trajectory. The final match value is the minimum of all match values. 

.                                                                                               (6.2)                            

             
6.5(a) Estimated trajectory to the left of ground truth. 
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6.5 (b)Estimated trajectory to the right of ground truth. 

                    
6.5(c) Optimal match. 

 

Fig 6.5: Illustration of how the match against ground truth works.  
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CHAPTER 7  

RESULTS 

  

This chapter starts with a section that demonstrates the accuracy of the sensors. This is followed 

by a review of the results in Section 7.2 and presentation of the 3D maps is found in 7.3. 

 

7.1   Accuracy of Sensors 

This section shows how the gyro and odometry sensors perform under different circumstances. 

This gives a hint of the accuracy of the sensors as well as an idea of how well these sensors can 

be trusted when fusing their measurements with the visual odometry. 

Three different evaluations are made; two using a circular track and one using a straight track. 

The circular track is approximately one meter in diameter and its curvature is in that way 

comparable with the curvature in the figure-eight data set that will be used in the evaluations. 

Two runs are made; one clockwise and one counterclockwise. Each run consists of two laps 

and the quadcopter is flown in three different speeds. The results of these tests show whether 

the gyro and odometry sensors are calibrated or not. 

 

The run along the straight line will show whether the gyro or the odometry suffers from drift 

and in the odometry case also how well it measures the traveled distance. The line is ten meters 

long and the runs are made in three different speeds. 

 

The speeds in which the quadcopter is flown in all three evaluations are as follows: 

1. Low speed is approximately 15-20 [cm/s], 

2. medium speed is approximately 20-25 [cm/s] and 

3. fast speed is approximately 30-35 [cm/s]. 

 

Figure 7.1 shows the measurements from the gyro when the quadcopter is flown a- round in a 

circular pattern. Measurements in Figure 7.1a are captured when the quadcopter moves 

counterclockwise and the plot indicates that the measurements have not quite reached the true 

level, except in the run with medium speed. Figure 7.1b, related to the clockwise movement of 

the quadcopter, shows that the measurements are all too small. This can be explained by a small 
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negative drift in the gyro. The   odometry also measures the yaw angle and from the results in 

Figure 7.2 the conclusion is that the measurements vary widely. 

 

Another test of the sensors has been performed flying on a straight line with a length of ten 

meters. Figure 7.3 shows gyro measurements along the line and Table 7.1 presents the 

measured length by   odometry. The results indicate measurements near true values when the 

quadcopter is flown at low speed, whereas the deviations from true values are visible at higher 

speeds. 

 

 

 

 

 
7.1 (a) Gyro measurements when flying two laps counter- clockwise. The measured values 

are a little too small except in the run with medium speed. 
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7.1 (b) Gyro measurements when flying two laps clockwise. The measured values are too big 

in all three cases. 
 

Fig 7.1: Yaw angle measurements from the gyro when flying with three different speeds, two 
laps in a circle with a diameter of one meter. The measured values indicate a small negative 

drift for the gyro. 
 

 
7.2 (a)  Odometry measurements when flying two laps counterclockwise. The measured 

values are a little too small except in the run with medium speed. 
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7.2 (b)  Odometry measurements when flying two laps clockwise. The measured values are too 

small in two of three cases. 
 

Fig 7.2: Yaw angle measurements from the odometry sensor when flying with three different 
speeds, two laps in a circle with a diameter of one meter.  

 

The measured values indicate that the   odometry does not measure the yaw angle as accurately 

as the gyro. 

 

 
Fig 7.3: Yaw angle measurements from the gyro when flying on a straight ten-meter line. 
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 The slow run gives a result close to the true value, while the drift in the two other cases is 

noticeable. 

 

 

 
 

Table 7.1: Length measurements by odometry of a ten meters’ straight line. 

 

7.2 Evaluation of the SLAM Algorithms 

In this section, the performance of both the original and the modified algorithm is evaluated. 

Original algorithm here refers to the non-altered open source algorithm RGBDSLAM, which 

uses visual information only, while modified algorithm refers to the one using visual 

information as well as   odometry and gyro data. 

 

7.2.1 Original Algorithm. Figure-Eight Data Set 

The evaluation is started by running the original algorithm on the figure-eight data set. 

Robust Parameters 

The estimated trajectory, using the robust parameter alternative looks as in Figure 7.4. The joint 

of the two circles is approximately 10 cm too far away in the Y -direction compared to ground 

truth. The first and the second lap overlaps to a very large extent. The trajectory is somewhat 

jagged and uneven in a way that is not plausible compared to how the quadcopter was flown.  

Speed Measured lenght [m] Time [s] 

Slow 9.91 67.9 
Medium 9.92 42.2 
Fast 8.81 28.6 
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Fig 7.4: The estimated trajectory compared to ground truth. 

 

Slimmed Parameters 

Using the same data set, but setting the parameters of the algorithm to the more slimmed 

alternative, the result is as according to Figure 7.5. The attempt to lessen the computational 

burden results in that the estimated trajectory does not resemble the ground truth. The first 

estimates lie on track but once the environment is such that the matching between the extracted 

landmarks is too bad, the algorithm is lost and has very little chance to find its way back. The 

associated 3D map can be studied below. 

 

 
Fig 7.5: The estimated trajectory compared to ground truth. Slimmed parameters and no filter. 

The estimated trajectory does not resemble the ground truth. 
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7.2.2 Modified Algorithm. Figure-Eight Data Set 

The concluding evaluation of the modified algorithm with the figure-eight data set is presented 

below. 

 

Fig 7.6: Pose and direction of travel estimates by the filter and direction of travel 
measurements by   odometry and visual odometry. 

 

Fig 7.7:  Match between the estimated trajectory and ground truth. Slimmed parameters and 
filter on. 
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Robust Parameters 

Using the robust parameter setup and the figure-eight data set, the input looks as in Figure 7.14. 

A sample of estimated positions and measured directions are showed in Figure 7.15. The match 

against ground truth can be seen below. 

 

Fig 7.8: Visual and odometry inputs to the filter. Robust parameter settings in the figure-eight 
data set gives high confidence in visual odometry. 

 

 

Fig 7.9: Filter estimates and measurements in the top right of the figure- eight route when the 
visual odometry have high reliability. 
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Fig 7.10: Match between the estimated trajectory and ground truth. Robust parameters and 
filter on. 

Slimmed Parameters 

The change to slimmed parameters results in less trust in the visual odometry, which is clear 

from Figure 7.11. Figure 7.12 shows that the uncertainty in the estimates from the filter is 

bigger, which follows from the more uncertain visual odometry measurements. The match 

against ground truth is presented in Figure 7.13 and 3D maps are found in Figures 7.17. 

 
Fig 7.11: Visual and odometry inputs to the filter. Covariances of the visual odometry larger 

than in the robust parameter case. 
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Fig. 7.12: Filter estimates and measurements in the top right of the figure eight route when 

the visual odometry has low reliability. 

 

 

Fig 7.13: Match between the estimated trajectory and ground truth.                                  
Slimmed parameters and filter on. The resulting trajectory is not quite as                                

smooth as with robust parameters. 
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7.3   3D Maps 

In this section, the 3D maps generated by RGBDSLAM are presented. There is no quantitative 

quality measurement applied to them. Instead their strengths and weaknesses are discussed 

from what is visible in the figures. It is worth mentioning that the coordinate systems that can 

be seen in the maps represent the Kinect’s position and not the one of the quadcopter base in 

contrast to the figures above. 

7.3.1 Original Algorithm. Figure-Eight Data Set 

Figures 7.14 and 7.15 show the results from the original algorithm run on the figure-eight data 

set. The first figure shows a rectangular room with a little mismatch on the right-hand side 

walls. Figure 7.16 shows no mismatch on the legs of the tables, while Figure 7.15 shows a non-

rectangular room. 

 

Fig 7.14: 3D map from the figure-eight data set. Robust parameters, no filter. Overview. 

 

 

Fig 7.15: 3D map from the figure-eight data set. Slimmed parameters, no filter. 
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7.3.2 Modified Algorithm. Figure-eight Data Set 

Fig 7.16 to 7.17 show maps estimated using the modified algorithm and the figure-eight data 

set. Both overviews show a rectangular room, although the map originating from the slim 

parameter setup has thicker walls. From Figures 7.16 and 7.17 it is also clear that table legs are 

more spread using slim parameters. 

 

Fig 7.16: 3D map from the figure-eight data set. Robust parameters and filter. Overview of 
the rectangular shaped room. The right wall is thick 

 

 

Fig 7.17: 3D map from the form figure-eight data set. Slimmed parameters and filter. An 
overview of the room. The rectangular shape of the true room is kept and the map has details 

that seem to be in one piece. 
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CHAPTER 8  

CONCLUSION 

This chapter sums up the results and discusses factors that affect the result and matters that 

could have been treated differently. The chapter also gives a list of future work with relevant 

tasks that could improve the performance and usability of the system. 

 

8.1 Results and discussion 

The overall results of the project indicate that the SLAM algorithms can run successfully even 

when the camera moves at a high speed in a 3D environment. They can also handle an 

environment with few landmarks and low lighting conditions.  

The 3D maps and associated building models are enabling the convergence of several 

established disciplines, including engineering computer-aided drafting (CAD), architectural 

building information management (BIM), and geographic information systems (GIS). Our 

project, 3D reconstruction using Kinect and RGB-D SLAM, presents an efficient and stable 

way of reconstructing an 3D environment. 3D mapping can be used for large scale topographic 

surveys; city planning and management; academic research; utilities and energy management 

such as powerline inspections; scoping, planning and management of mines; forestry design, 

management and operation. The preliminary result shows us that our system, although suffer a 

little from portability issue, can create 3D representation of a 20-25-bulding in 20 minutes. Our 

immediate future goal is to improve portability and usability, so that the system is usable even 

at very high altitudes and can process and compute the data faster. 

 

8.2 Future Work 

The list of future work can be made long. Here follows an abstract of tasks that are interesting 

to implement as a follow up to this project. 

 

1. The whole project can be made on a portable small computer like the Raspberry Pi 3 which 

will eliminate the need for any wired connection. The 3D map depth data from the Kinect 

will be streamed to the main workstation using Samba. The processing will be done on a 

powerful workstation which will be based on an x86 processor instead of arm or arm64 

architecture.  
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2. Investigate possible advantages with other feature detectors - Early on it was in the scope 

of this project to investigate whether different feature detectors would give any difference 

when extracting landmarks from sparse featured images. That task has been given low 

priority and has not yet been done. Even so it still remains an interesting task. 

 

3. Exporting 3D maps to OctoMap - Exporting the produced 3D maps to OctoMap is a way 

to get a map that is suitable for route planning and, in the end, autonomous navigation. It is 

also a very efficient way of saving maps of the environment [39]. 

 

4. Evaluate and shorten the computation time - RGBDSLAM came with an implementation 

to measure the computation times for different steps. The extension with the filtering 

procedure is interspersed in such a way that it invalidates these measurements and it would 

be interesting to restore the order and be able to accurately measure computation times 

again. This is a step towards optimizing the code and in the long term, perhaps, approach 

real time performance. 
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